
Eur. Phys. J. D 46, 165–172 (2008)
DOI: 10.1140/epjd/e2007-00272-8 THE EUROPEAN

PHYSICAL JOURNAL D

Generation of maximally entangled atom pairs in driven
dissipative cavity QED systems

F. Casagrandea and A. Lullib
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Abstract. We investigate the entanglement of an open tripartite system where a cavity field mode in ther-
mal equilibrium is off-resonantly coupled with two atoms that are simultaneously driven by a resonant
coherent field. For moderately detuned atom-field coupling and strong atomic driving we show the genera-
tion, at given interaction times and for low enough cavity decay rates, of atomic Bell states and of Bell state
superpositions relevant for quantum gates implementation. The system can oscillate between bi-separable
and fully separable states. Also we describe the distribution of quantum correlations between the atom-
atom and the two atom-field subsystems. In the dispersive coupling regime with strongly driven atoms we
show the generation of nearly stationary Bell states which remain protected from cavity dissipation.

PACS. 42.50.Pq Cavity quantum electrodynamics; micromasers – 03.67.Mn Entanglement production,
characterization, and manipulation

1 Introduction

Since the early years of quantum mechanics entanglement
was recognized as one of the most peculiar and puzzling
feature of the theory [1]. Much later the Bell theorem [2]
and the related experiments, in particular by Aspect and
coworkers [3], made this issue regain a central role [4].
More recently entanglement has become a basic resource
in quantum information (QI) [5]. In particular, the entan-
glement properties of multipartite systems are the object
of intense research [6], also in the case of systems com-
posed by qubits and Continuous Variable (CV) subsys-
tems [7].

To implement QI processes many physical systems
have been proposed such as atom-photon systems, nuclear
and electron spins, quantum dots, superconductive quan-
tum interference devices [8]. Current technological efforts
are devoted to realize experimental setups to better sat-
isfy the requirements of robust representation of quantum
information, easy realization of unitary transformations
(quantum gates), fiducial preparation of the initial states,
and precise measurement of the output results.

In this paper we focus our attention on Cavity Quan-
tum Electrodynamics (CQED) systems, where atoms and
photons interact inside a cavity in the microwave or in
the optical domain [9–11]. Typically, the atoms excited to
long-lived Rydberg levels are injected into the cavity either

a e-mail: federico.casagrande@mi.infn.it
b e-mail: alfredo.lulli@unimi.it

flying through it or being trapped inside; recent improve-
ments allow to trap one or few atoms in a deterministic
way [12]. Recent achievements include e.g. the demonstra-
tion of entangled states between two atoms [13,14], two
photons [15], one atom and one photon [16], the teleporta-
tion of an atom-photon state [17] and of a quantum state
from light onto matter [18]. In the framework of trapped
ions parallel results have been recently achieved [19].

The interaction between an atom and a cavity mode
field is ruled by the well-known Jaynes-Cummings (JC)
model [20] for both resonant and off-resonant coupling.
An additional coherent field that drives the cavity mode or
the atom can be added to the atom-field interaction [21].
In particular, it has been shown that at resonance and
in the strong driving regime the whole atom-field-driving
coupling can simultaneously realize the JC and the “anti-
JC” dynamics in CQED [22]. Most related works have
focussed on either the resonant or the dispersive regimes
of atom-cavity field coupling [23–25]. We note here that in
the framework of trapped ions [9] the JC and “anti-JC”
dynamics can be implemented in the interaction between
the atomic transition and the vibrational modes of the
ions system.

In this paper we investigate the dynamics of a CQED
system composed by a pair of coherently driven two-level
atoms coupled to a cavity mode also interacting with
a thermal bath. We propose to solve the whole system
dynamics by means of the Monte Carlo Wave Function
(MCWF) approach [26] to fully investigate all regimes also
in the presence of cavity and atomic decays. In fact, we can
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generalize early work as in [27] where the conditioned two-
atoms dynamics was solved only in the strong-detuning
and low-driving regimes under the condition of the cavity
field always in the vacuum state. We remark that with
current CQED technology it should be possible to imple-
ment our scheme in the case of atoms flying through the
cavity [9]. In the case of atoms trapped inside the cavity,
that is the better perspective for quantum computation,
further improvements in the neutral atoms trapping tech-
nology [28] should allow to implement our scheme in the
near future. An alternative approach to trapped neutral
atoms may be that of using two ions trapped inside a high
finesse optical cavity [29], where the interaction between
the atoms is mediated by the cavity mode while the vi-
brational degrees are cooled to the ground state.

From our analysis two regimes emerge as quite promis-
ing for the generation of maximally entangled bi-atomic
Bell states at given interaction times or even stationary:
namely, the regimes of moderate or large atom-field de-
tuning, in both cases under strong atom-field coupling
and strong atomic driving conditions. In the first regime
also Bell state superpositions can be generated such that
one could implement with the atom pair a logic gate
suggested [23] and demonstrated [30] with two trapped
ions. Furthermore, the physical mechanism for atomic en-
tanglement is in principle scalable for quantum informa-
tion/computation purposes.

In Section 2 we introduce the system and the methods
to investigate its dynamics. In Section 3 we describe the
open system dynamics in the strong coupling regime of
CQED, both on- and off-resonance and for different de-
tuning and driving conditions. The effects of cavity and
atomic dissipation are treated in Section 4. Conclusive re-
marks are reported in Section 5.

2 System dynamics description

We consider a pair of identical two-level Rydberg atoms
whose relevant energy eigenstates are |g〉i, |e〉i (i = 1, 2).
Both atoms interact simultaneously and for the same in-
teraction time t with a cavity mode and an external
coherent driving field at frequencies ωc and ωf , respec-
tively. The system Hamiltonian can be written as Ĥ(t) =
Ĥ0 + Ĥ1(t), where

Ĥ0 = �ωcâ
†â+

�ωa
2

2∑

i=1

σ̂z,i

Ĥ1(t) = �

2∑

i=1

[g(âσ̂†
i + â†σ̂i) +Ω(eiωf tσ̂i + e−iωf tσ̂†

i )],

(1)

where â†(â) is the creation (annihilation) operator of the
cavity field mode, σ̂†

i = |e〉i〈g| (σ̂i = |g〉i〈e|) the raising
(lowering) operator for the atomic transition at frequency
ωa, σ̂z,i = |e〉i〈e| − |g〉i〈g|, g the coupling constant of the
atoms with the cavity field, Ω the Rabi frequency associ-
ated with the amplitude of the coherent field that drives

the atoms. We can change to the interaction picture [31]
by the unitary operator exp{ i

�
Ĥ0t} so that the system

Hamiltonian (1) becomes Ĥi = Ĥ ′
0 + Ĥ ′

1 where:

Ĥ ′
0 = �(∆− δ)â†â+ �∆

2∑

i=1

|e〉i〈e| + �Ω

2∑

i=1

σ̂x,i

Ĥ ′
1 = �g

2∑

i=1

(âσ̂†
i + â†σ̂i). (2)

We introduced the operators σ̂x,i = σ̂†
i + σ̂i (i = 1, 2)

and the detuning parameters δ = ωa − ωc and ∆ = ωa −
ωf for the atom-cavity mode and the atom-driving field,
respectively.

We can also include the dissipative dynamics for the
cavity mode at rate κ, when it is in contact with the en-
vironment, and the atomic decays at rate γ. Therefore,
we describe the open system dynamics by the following
master equation (ME) for the whole system statistical op-
erator ρ(t):

ρ̇ = − i

�
[Ĥi, ρ] + L̂cρ+ L̂aρ, (3)

where the square bracket denotes a commutator, L̂c is the
standard Liouville super-operator for a damped harmonic
oscillator at zero temperature

L̂cρ = −κ
2
(â†âρ− 2âρâ† + ρâ†â) (4)

and L̂a the standard Liouville super-operator for the decay
of the atomic levels |e〉i:

L̂aρ = −γ
2

2∑

i=1

(σ̂†
i σ̂iρ− 2σ̂iρσ̂

†
i + ρσ̂†

i σ̂i). (5)

To identify the collapse and the “free evolution” opera-
tors for the MCWF method we rewrite the ME (3) in the
Lindblad form:

ρ̇ = − i

�
(Ĥeρ− ρĤ†

e) +
3∑

i=1

ĈiρĈ
†
i (6)

where the non-Hermitian effective Hamiltonian Ĥe is

Ĥe =
Ĥi

g
− i�

2

3∑

i=1

Ĉ†
i Ĉi, (7)

and the collapse operators are Ĉ1,2 =
√
γ̃σ̂1,2, Ĉ3 =

√
k̃â.

We have introduced the dimensionless time t̃ = gt so that
the relevant dimensionless system parameters are:

∆̃ =
∆

g
, δ̃ =

δ

g
, Ω̃ =

Ω

g
, κ̃ =

κ

g
, γ̃ =

γ

g
. (8)

The system dynamics can be simulated by a suitable num-
ber Ntr of trajectories, i.e. stochastic evolutions of the
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whole system wave function |ψj(t̃)〉 (j = 1, 2, ...Ntr), by
means of the following main rule

|ψj(t̃+ δt̃)〉 =

⎧
⎪⎨

⎪⎩

(1− i
�
Ĥeδt̃)|ψj(t̃)〉√
1−δp(t̃)

if δp(t̃) < Nrnd

Ĉi|ψj(t̃)〉√
δp(t̃)

if δp(t̃) > Nrnd
,

(9)
where δt̃ is a suitable small time interval, δp(t̃) is the col-
lapse probability at time t̃, and Nrnd is a random number
generated from a uniform distribution in [0, 1]. We note
that the collapse probability depends on the cavity field
mean photon number 〈N̂〉(t̃) and the excited state popula-
tions pe,i(t̃), and can be evaluated as δp(t̃) = δt̃[κ̃〈N̂〉(t̃)+
γ̃(pe,1(t̃) + pe,2(t̃))]. Therefore, the statistical operator of
the whole system can be approximated by averaging over
the Ntr trajectories, i.e., ρ(t̃) ∼= 1

Ntr

∑Ntr

i=j |ψj(t̃)〉〈ψj(t̃)|.
In the numerical results presented in the next sections we
typically consider Ntr = 500, corresponding to reasonable
computation times.

For the initial state of the tripartite system we con-
sider a fully separable state where each atom is prepared
in the ground or excited state and the cavity field is in
the vacuum state |0〉F . For example, if both atoms are in
the ground state we have |ψ(0)〉 = |g〉1 ⊗ |g〉2 ⊗ |0〉F ≡
|gg0〉. The properties of the atom-atom subsystem are de-
scribed by the reduced density operator obtained by a
partial trace over the field variables ρa(t̃) = TrF ρ(t̃). Like-
wise the properties of the two (equal) atom-field subsys-
tems are described by the reduced density operator (e.g.)
ρ1F (t̃) = Tr2ρ(t̃) where the partial trace is taken over the
variables of atom 2. To evaluate the degree of mixedness
of the subsystem states we will consider the purities, e.g.
µ12 = Traρ2

a for the atom pair. We choose to quantify the
atom-atom entanglement by means of the entanglement
of formation εF (t̃) [32]. We shall compare the atom-atom
and the atom-field entanglement in the case that only the
Fock states |0〉F and |1〉F are relevant, so that the CV field
mode can be approximated to a third qubit [13]. In that
case we can consider the negativity Ne = max {0,−λ−},
where λ− is the only one negative eigenvalue of the Partial
Transpose [33] of the subsystem density matrix.

3 System dynamics in the strong coupling
regime

In this section we consider the system dynamics under
strong coupling conditions g � κ, γ, that are typical in
CQED experiments in the case of atoms flying through
a microwave cavity [9] and are also available for atoms
stored inside high-finesse cavities [34]. We are mainly in-
terested in the possibility to generate entangled states for
the atom-atom subsystem and to investigate the entangle-
ment sharing between subsystems. We first consider the
resonant case under different driving conditions and then
we focus on the detuned regimes.

3.1 Driving effect at resonance

Under resonant atom-driving field interaction (∆̃ = 0),
we can rewrite the Hamiltonian Ĥi in (2) by the unitary
transformation exp ( i

�
Ĥ ′

0t) in the form:

Ĥ ′
i(t) =

�
g

2

2∑

i=1

{e−iδtâ†[(1 − e2iΩt)σ̂†
i + (1 + e2iΩt)σ̂i] + h.c.}.

(10)

In addition, if we also consider atom-cavity mode resonant
coupling (δ = 0) and the strong driving limit (Ω � g),
the fast oscillating terms in (10) can be neglected leaving
an effective Hamiltonian

Ĥ
′SD
i = �

g

2

2∑

i=1

(â+ â†)σ̂x,i. (11)

The above equation outlines the simultaneous occurrence
of the Jaynes-Cummings and the “anti-JC” interaction of
each coherently driven atom with the cavity field [22–25].
In the limit of negligible atomic decays (γ = 0), the ME of
the whole system can be solved exactly, even in the pres-
ence of cavity dissipation [35]. In this regime the absence
in (11) of the driving field, whose action has been aver-
aged, makes each atom independently interact with the
cavity field. This implies the onset of interesting atom-
atom correlations [22,24], also related to the decoherence
of mesoscopic cavity field superposition states [36], but
these correlations are classical [37]. This agrees with the
result [37] that a single strongly driven atom in state |g〉
(or in |e〉) and a resonant cavity field mode in the vacuum
state (or in any coherent state) can become maximally and
permanently entangled within short times t̃ ∼ 2, that is a
larger and more robust entanglement than in the standard
JC system [38]. We remark that the effective Hamiltonian
(11), in the case of only one atom, can also describe a more
complex system in CQED composed by a three-level atom
in Λ-configuration interacting with an optical cavity and
driven by suitably detuned laser fields; the system realizes
a Strongly-Driven One-Atom Laser [39].

If we do not consider the above strong driving limit we
find that entangled atomic states can be generated up to
Ω̃ � 5. However the atomic entanglement of formation is
irregular in time and rather weak.

3.2 Off-resonance dynamics: generation of maximally
entangled atomic states

3.2.1 Moderated detuning regime

Under strong coupling conditions, dimensionless detuning
δ̃ = O(1), and for weak driving field amplitude Ω̃ ≈ δ̃, we
find evidence of atom-atom entanglement, but the entan-
glement of formation εF remains rather low and is quite
irregular in time, as the whole system dynamics. In the
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Fig. 1. System dynamics in the strong coupling regime (κ̃ =
10−3, γ̃ = 10−4) for ∆̃ = 0, δ̃ = 2, and Ω̃ = 20: (a) cavity
mean photon number, (b) atomic populations, (c) atom-atom
entanglement of formation, (d) purity of the atom-atom states,
(e) negativity of the atom-atom (solid line) and atom-cavity
field (dotted line) states.

rest of this subsection we shall concentrate on the much
more interesting case of the strong driving regime, Ω̃ � δ̃.

Let us start with the case δ̃ = 2, Ω̃ = 20, where the
detuning value δ = 2g corresponds to the vacuum Rabi
frequency. Figures 1a–1e show that the system exhibits a
periodical behavior. The cavity field mean photon num-
ber 〈N̂〉 (Fig. 1a) oscillates between zero and roughly 0.5
at the detuning frequency. The atomic populations pe,g
(Fig. 1b), that are equal for both atoms, exhibit a re-
peated collapse-and-revival evolution with a doubled pe-
riod, modulating the fast driven oscillations. Most impor-
tant (Fig. 1c) the atom-atom entanglement of formation
εF shows the generation of maximally entangled states at
times gtk = (2k+1)π, (k = 0, 1, ...), whereas quantum cor-
relations are negligible in between. All these peaks coin-
cide with vanishing values of the mean photon number and
with collapsed atomic populations, corresponding to the
single atoms in maximally mixed states. In Figure 1d the
atomic purity µ12 exhibits maxima thus demonstrating
that at times gtk the tripartite system is in a bi-separable
state, where the atoms turn out to be in superpositions of
Bell states and the cavity field is in the vacuum state:

|φB(tk)〉 =
|Φ+〉 ∓ i|Φ−〉√

2
⊗ |0〉F ∝ |gg〉 ∓ i|ee〉√

2
⊗ |0〉F

(12)

where the upper (lower) sign refers to the time gt0 = π
(gt1 = 3π) of the first (second) maximum of atomic quan-
tum correlations. The same result is obtained starting
with both atoms in the excited state. In the case of atoms
prepared in different states, we find the same superposi-
tions of the other two Bell states, i.e.:

|ψB(tk)〉 =
|Ψ+〉 ∓ i|Ψ−〉√

2
⊗ |0〉F ∝ |ge〉 ∓ i|eg〉√

2
⊗ |0〉F .

(13)

Figure 1d also shows that the atomic purity, like the mean
photon number, actually peaks at twice the frequency of
the atomic entanglement of formation, that is negligible
in between the main ones. On the other hand the atomic
populations of Figure 1b show simultaneous maxima of
the lower state population pg. Hence we can argue that
at these dimensionless times, gtk = 2kπ (k = 1, 2, ...), the
system is very close to a pure and fully separable state
that is in fact the initial state |g〉1⊗|g〉2⊗|0〉F . This holds
also for the other atomic initial states. These results gen-
eralize the prediction of pure separable cavity field-single
atom states for certain interaction times in the standard
(undriven) JC system [40]. The global picture is fully con-
firmed in Figure 1e where we compare the atom-atom and
the atom-field negativities. This case nicely shows the gen-
eration and the dynamical distribution of system entan-
glement, which periodically concentrates on the bipartite
subsystems as well as nearly vanishes when the system
closely approaches the initial fully separable state.

We remark that the transformation |gg〉 �→ 1√
2
(|gg〉 −

i|ee〉) for the atomic part of (12) was proposed in [41]
to implement, together with single-ion operations, the
C-NOT gate with two trapped ions. Furthermore, let
us consider the transformations (12) and (13) at time
gt0 = 3π for atoms prepared in states |gg〉, |ge〉 and
gt1 = π for atoms initially in |ee〉, |eg〉, i.e.

|gg〉, |ee〉 �→ |gg〉 ± i|ee〉√
2

|ge〉, |eg〉 �→ |ge〉 ± i|eg〉√
2

(14)

where the first (second) state transforms with the up-
per (lower) sign. Relations (14) provide a logic gate that
was implemented for two trapped ions [30] and, together
with single-qubit rotations, can realize universal quantum
logic [23].

In Figure 2 we consider the case δ̃ = 2, Ω̃ = 200,
i.e., a driving field amplitude larger than in the previous
case by one order of magnitude. The global picture now
shows only partial elements of periodicity. The mean pho-
ton number, reported in Figure 2a, still oscillates at the
detuning frequency, with higher peaks than in Figure 2a.
On the contrary (Fig. 2b) the atomic populations collapse
and after a tiny revival remain at the stationary value of
0.5. In Figures 2c and 2d we see that maximally pure en-
tangled atomic states are generated at the same times,
gt′k = kπ, (k = 1, 2, ...), as the zeros of the mean photon
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Fig. 2. System dynamics in the strong coupling regime (κ̃ =
10−3, γ̃ = 10−4) for ∆̃ = 0, δ̃ = 2, Ω̃ = 200: (a) cavity mean
photon number, (b) atomic populations, (c) atom-atom entan-
glement of formation, (d) purity of the atom-atom states, (e)
negativity of the atom-atom (solid) and atom-cavity field (dot-
ted) states.

number, i.e., at a doubled frequency than in Figure 1c.
Hence the robust increase in the driving field amplitude
prevents the system from returning very close to the initial
completely uncorrelated state. The bi-separable states at
times t′k consist in Bell states for the atom pair correlated
with the cavity field vacuum state:

|g, g, 0〉, |e, e, 0〉 �→ |gg〉+ |ee〉√
2

⊗ |0〉F = |Φ+〉 ⊗ |0〉F ,

|g, e, 0〉, |e, g, 0〉 �→ |ge〉 + |eg〉√
2

⊗ |0〉F = |Ψ+〉 ⊗ |0〉F .
(15)

Furthermore, the behavior of the bipartite subsystem neg-
ativities in Figure 2e shows that the atoms and the cav-
ity field become partially quantum correlated only at the
early stage of system dynamics. The latter result has how-
ever only a qualitative value because the approximation
of the cavity field as a qubit is very rough in this case.

3.2.2 Dispersive regime

Now we consider the large detuning limit of atom-cavity
field coupling, δ̃ � 1. We note that the JC Hamiltonian
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Fig. 3. System dynamics in the strong coupling regime (κ̃ =
10−3, γ̃ = 10−4) for ∆̃ = 0, δ̃ = 20, Ω̃ = 200: (a) atomic
populations, (b) atom-atom entanglement of formation εF .

Ĥ ′
1 of (2) could be replaced by an effective Hamiltonian [9]

ĤD
1 = �

g2

δ

2∑

i=1

(σ̂†
i σ̂i + â†âσ̂z,i) (16)

that describes a purely dispersive regime where there is
no energy exchange between the atoms and the cavity
field, and the coupling constant is reduced to g2/δ. Note
that atom-atom entanglement without driving field was
demonstrated [14] due to the occurrence of dipole-dipole
coupling for atoms prepared in different states [42]. By ap-
plying to (16) the same unitary transformation exp ( i

�
Ĥ ′

0t)
as to (2) we would obtain, instead of (10), the Hamiltonian

Ĥ
′D
i (t) = �

g2

2δ

2∑

i=1

[1̂i − (1 + 2â†â)(e2iΩtσ̂†
i + e−2iΩtσ̂i)].

(17)

Hence also in this regime we can well expect the gener-
ation of atomic entanglement because the previously dis-
cussed physical mechanism is still present, though there
is no direct coupling between atomic polarizations. Fur-
thermore, we expect that the atomic entanglement is by
no means limited by the occurrence of atom-field entan-
glement, because the field remains nearly decoupled from
system dynamics.

Also in the dispersive regime, like in the case of moder-
ate detuning, the strong driving limit Ω̃ � 1 leads to the
most interesting results. In Figure 3 we show numerical re-
sults in the case δ̃ = 20, Ω̃ = 200. As expected, the cavity
field always remains close to the initial vacuum state due
to the strong detuning with the atoms. Figure 3a shows a
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collapse of atomic populations, without trace of revival on
the time scale of interest for physical implementations. By
the time that the single atoms have decohered into a max-
imally mixed state, the atomic entanglement of formation
has reached the maximum value, where it remains with
negligible oscillations (Fig. 3b). Actually there is no com-
petition with negligible atom-field entanglement. Hence
we find the fast generation of nearly stationary atomic
Bell states, in particular: |g, g, 0〉,|e, e, 0〉 �→ |Φ+〉 ⊗ |0〉F
and |g, e, 0〉,|e, g, 0〉 �→ |Ψ+〉 ⊗ |0〉F . The tiny oscillations
correspond to states very close (in all cases) to superposi-
tions of the atomic Bell states |Φ+〉 and |Ψ+〉.

For driving field amplitude Ω � δ the system dynam-
ics is almost periodic, as well as the atomic entanglement
that can be maximum but only after time intervals rather
long for realistic implementations. For Ω � δ the dynam-
ics becomes faster: e.g., in the case Ω̃ = δ̃ = 10 the first
peak with εF (t̃) = 1 occurs at t̃ � 10. The periodicity
is lost and the build-up of atomic entanglement evolves
towards the fast and monotonic growth to the maximum
value as described in the strong driving regime.

4 The effect of dissipation

In this section we consider the effect of dissipation, in case
that the strong coupling conditions between the atoms and
the cavity field cannot be implemented.

First we investigate the regime of moderate detuning
and strong atomic driving as in Figures 1 and 2. In this
regime we focus on the effect of cavity dissipation, assum-
ing that the decay of atomic levels is negligible during
the interaction, as is usually the case in the microwave
domain [9], and may be the case for effective two-level
systems in the optical domain [22]. In Figure 4 we show
numerical results for the mean photon number, the atomic
entanglement of formation, and the atomic purity, with
the same parameters as in Figure 1 and for three values
of the dimensionless cavity decay rate, from k̃ = 0.01 to
k̃ = 0.5. For k̃ = 0.01 we see that the system dynamics is
unaffected by dissipation so that the periodic generation of
superpositions of atomic Bell states predicted in the strong
coupling regime remains valid. At the other extreme, for
k̃ = 0.5, the system approaches a steady-state via damped
oscillations with vanishing atomic entanglement, while the
atomic purity is heavily degraded. In Figure 5 we show nu-
merical results with the same parameters as in Figure 2
for the same quantities and the same dimensionless cav-
ity decay rate values as in Figure 4. For k̃ = 0.01 we see
again that the system dynamics is not affected by cavity
dissipation so that the prediction of periodic generation of
atomic Bell states under strong coupling conditions is con-
firmed. On the contrary, for k̃ = 0.5 the system reaches
a steady-state, where the atomic entanglement vanishes
and the atoms are in a maximally mixed sum of the two
relevant Bell states, i.e., 1

2 (|Φ+〉〈Φ+|+ |Ψ+〉〈Ψ+|). In Fig-
ures 4 and 5 we fixed a dimensionless atomic decay rate
γ̃ = 10−4, but the results remain almost identical up to
γ̃ = 10−3.
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Fig. 4. Dissipative regime under moderate detuning (δ̃ = 2)
and strong driving conditions (Ω̃ = 20), with negligible atomic
decay rate (γ̃ = 10−4): (a) cavity field mean photon number

〈N̂〉, (b) atom-atom entanglement of formation εF , (c) atom-
atom purity µ12. Dimensionless decay rate k̃ = 0.01 (dashed),
0.1 (dotted), 0.5 (solid).

On the other hand, in the strong driving and disper-
sive coupling regime as in Figure 3, where nearly station-
ary Bell states can be generated, cavity dissipation does
not affect the atomic quantum correlations at all, since
the cavity field always remains negligible. In this regime
we consider the possible effect of atomic decay. Hence in
Figure 6 we report the atomic entanglement of formation
and purity with the parameter of Figure 3, dimensionless
cavity decay rate k̃ = 0.5, and dimensionless atomic decay
rates ranging from γ̃ = 0.001 to γ̃ = 0.1, showing how the
increase of atomic dissipation might affect the generation
of almost stationary Bell states predicted under strong
coupling conditions.

5 Conclusions

We have described the dynamics and the quantum corre-
lations of an open tripartite system in cavity QED, where



F. Casagrande and A. Lulli: Generation of maximally entangled atom pairs 171

a)
0 10 20

0

0.5

1

gt

〈N〉

b)
0 10 20

0

0.5

1

gt

ε
F

c)
0 10 20

0.4

0.7

1

gt

µ
12

Fig. 5. Dissipative regime under moderate detuning (δ̃ = 2)
and strong driving conditions (Ω̃ = 200), with negligible
atomic decay rate (γ̃ = 10−4): (a) cavity field mean photon

number 〈N̂〉, (b) atom-atom entanglement of formation εF ,
(c) atom-atom purity µ12. Dimensionless decay rate k̃ = 0.01
(dashed), 0.1 (dotted), 0.5 (solid).

two coherently driven two-level atoms interact with a cav-
ity mode that is weakly coupled to the environment. This
system can be implemented with current or forthcoming
state of the art in the microwave or optical domains.

We have found two interesting regimes for the gen-
eration of maximally entangled atomic states. The first
one is a regime of moderate detuning under strong driv-
ing conditions: Ω̃ � δ̃ ∼ 1. Atomic Bell states can be
generated at given interaction times and for low enough
values of the cavity decay rate. Bell states superpositions
are also available for logic gates proposed and demon-
strated with trapped ions [23,30]. Bi-separable and fully
separable states can be generated. Also we describe how
the quantum correlations oscillate between the different
subsystems. The second interesting regime is obtained
for purely dispersive atom-field coupling combined with
strong atomic driving: Ω̃ � δ̃ � 1. Here the cavity field
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Fig. 6. Dissipative regime under dispersive coupling (δ̃ = 20)
and strong driving conditions (Ω̃ = 200), with cavity decay
rate (k̃ = 0.5): (a) atom-atom entanglement of formation εF ,
(b) atom-atom purity µ12. Dimensionless atomic decay rate
γ̃ = 0.001 (1), 0.005 (2), 0.01 (3), 0.05 (4), 0.1 (5).

always remains quite close to the initial vacuum state
and only acts as a catalyst for the formation of entangled
atomic states, as in the experiment of [14]. This allows the
generation of nearly stationary atomic Bell states, that are
not affected by cavity dissipation.

In both regimes the underlying physical mechanism
is that the atoms are driven by the same coherent field
while off-resonantly undergo JC and anti-JC interactions
with the cavity field. Under reasonable control of the cou-
pling constants and the interaction times this mechanism
appears to be scalable for applications in quantum infor-
mation processing and computation. In the strong driv-
ing limit but for resonant atom-field interaction the above
mechanism is instead inhibited because the atoms become
fully quantum-correlated with the cavity field [37].

The results presented in this paper extend and basi-
cally complete the general picture on the entanglement
properties of this system in all main dynamical regimes.

This work has been supported by MIUR through the project
PRIN-2005024254-002.
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